Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(16): 11440-11448, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35921287

RESUMO

We investigated trophic dynamics of Hg in the polluted Baltic Archipelago Sea using established trophic magnification (TMFs) and biomagnification factors (BMFs) on a comprehensive set of bird, fish, and invertebrate species. As different ecological and ecophysiological species traits may affect trophic dynamics, we explored the effect of food chain (benthic, pelagic, benthopelagic) and thermoregulatory strategy on trophic total Hg (THg) dynamics, using different approaches to accommodate benthopelagic species and normalize for trophic position (TP). We observed TMFs and most BMFs greater than 1, indicating overall THg biomagnification. We found significantly higher pelagic TMFs (3.58-4.02) compared to benthic ones (2.11-2.34) when the homeotherm bird species were excluded from models, but not when included. This difference between the benthic and pelagic TMFs remained regardless of how the TP of benthopelagic species was modeled, or whether TMFs were normalized for TP or not. TP-corrected BMFs showed a larger range (0.44-508) compared to BMFs representing predator-prey concentration ratios (0.05-82.2). Overall, the present study shows the importance of including and evaluating the effect of ecological and ecophysiological traits when investigating trophic contaminant dynamics.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Aves , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Mercúrio/análise , Poluentes Químicos da Água/análise
2.
Mar Environ Res ; 163: 105216, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227618

RESUMO

Climate change will include a decrease in seawater salinity in the Baltic Sea. We quantified the effects of the projected future desalination on survival of the early life stage of the littoral herbivore Idotea balthica. We collected egg-bearing Idotea from three range-margin Baltic Sea populations, we exposed half of each brood to either current (6‰) or future salinity (3.5‰). We genotyped a subsample of each brood to analyse patterns of allelic change and to identify genomic regions targeted by selection. The survival was overall reduced by hyposalinity and broods varied in response to hyposalinity implying genetic variation in tolerance, with a stronger decrease in genetic diversity in future salinity. Finally, we identified proteins with crucial roles in basic cellular functions. This study indicates that projected future northern Baltic Sea hyposalinity will not just hamper I. balthica survival, but its selective pressure may also affect genetic diversity and cell physiology.


Assuntos
Mudança Climática , Salinidade , Países Bálticos , Genômica , Água do Mar
3.
BMC Genomics ; 21(1): 42, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931708

RESUMO

BACKGROUND: Rockweeds are among the most important foundation species of temperate rocky littoral shores. In the Baltic Sea, the rockweed Fucus vesiculosus is distributed along a decreasing salinity gradient from the North Atlantic entrance to the low-salinity regions in the north-eastern margins, thus, demonstrating a remarkable tolerance to hyposalinity. The underlying mechanisms for this tolerance are still poorly understood. Here, we exposed F. vesiculosus from two range-margin populations to the hyposaline (2.5 PSU - practical salinity unit) conditions that are projected to occur in the region by the end of this century as a result of climate change. We used transcriptome analysis (RNA-seq) to determine the gene expression patterns associated with hyposalinity acclimation, and examined the variation in these patterns between the sampled populations. RESULTS: Hyposalinity induced different responses in the two populations: in one, only 26 genes were differentially expressed between salinity treatments, while the other population demonstrated up- or downregulation in 3072 genes. In the latter population, the projected future hyposalinity induced an acute response in terms of antioxidant production. Genes associated with membrane composition and structure were also heavily involved, with the upregulation of fatty acid and actin production, and the downregulation of ion channels and alginate pathways. Changes in gene expression patterns clearly indicated an inhibition of the photosynthetic machinery, with a consequent downregulation of carbohydrate production. Simultaneously, energy consumption increased, as revealed by the upregulation of genes associated with respiration and ATP synthesis. Overall, the genes that demonstrated the largest increase in expression were ribosomal proteins involved in translation pathways. The fixation rate of SNP:s was higher within genes responding to hyposalinity than elsewhere in the transcriptome. CONCLUSIONS: The high fixation rate in the genes coding for salinity acclimation mechanisms implies strong selection for them. The among-population differentiation that we observed in the transcriptomic response to hyposalinity stress suggests that populations of F. vesiculosus may differ in their tolerance to future desalination, possibly as a result of local adaptation to salinity conditions within the Baltic Sea. These results emphasise the importance of considering interspecific genetic variation when evaluating the consequences of environmental change.


Assuntos
Adaptação Biológica/genética , Fucus/fisiologia , Regulação da Expressão Gênica , Genes Reguladores , Salinidade , Alga Marinha/fisiologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Variação Genética , Anotação de Sequência Molecular , Transcriptoma
4.
Ecol Evol ; 9(16): 9225-9238, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463018

RESUMO

In the course of the ongoing global intensification and diversification of human pressures, the study of variation patterns of biological traits along environmental gradients can provide relevant information on the performance of species under shifting conditions. The pronounced salinity gradient, co-occurrence of multiple stressors, and accelerated rates of change make the Baltic Sea and its transition to North Sea a suitable region for this type of study. Focusing on the bladderwrack Fucus vesiculosus, one of the main foundation species on hard-bottoms of the Baltic Sea, we analyzed the phenotypic variation among populations occurring along 2,000 km of coasts subjected to salinities from 4 to >30 and a variety of other stressors. Morphological and biochemical traits, including palatability for grazers, were recorded at 20 stations along the Baltic Sea and four stations in the North Sea. We evaluated in a common modeling framework the relative contribution of multiple environmental drivers to the observed trait patterns. Salinity was the main and, in some cases, the only environmental driver of the geographic trait variation in F. vesiculosus. The decrease in salinity from North Sea to Baltic Sea stations was accompanied by a decline in thallus size, photosynthetic pigments, and energy storage compounds, and affected the interaction of the alga with herbivores and epibiota. For some traits, drivers that vary locally such as wave exposure, light availability or nutrient enrichment were also important. The strong genetic population structure in this macroalgae might play a role in the generation and maintenance of phenotypic patterns across geographic scales. In light of our results, the desalination process projected for the Baltic Sea could have detrimental impacts on F. vesiculosus in areas close to its tolerance limit, affecting ecosystem functions such as habitat formation, primary production, and food supply.

5.
Mar Pollut Bull ; 149: 110522, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31437612

RESUMO

We determined the spatial and seasonal distribution of Floating Marine Debris (FMD) by visual ship surveys across the northern Baltic Sea between Finland and Sweden. FMD density was comparatively low, and we found the highest debris density close to major port cities. The seasonal variation in debris density was not pronounced although we observed more FMD items during the summer surveys. Plastic bags were the most common identifiable litter items, and we also found other consumer items (plastic bottles and cups). Styrofoam items suggest fishing or aquaculture activities as potential sea-based sources of FMD. These are the first data on FMD density in the Baltic Sea, and they are substantially lower than those reported for other coastal waters, which may be due to (i) lower human population densities, and (ii) higher environmental awareness in the Scandinavian countries.


Assuntos
Resíduos/análise , Poluição da Água/análise , Aquicultura , Oceano Atlântico , Monitoramento Ambiental , Finlândia , Plásticos/análise , Poliestirenos/análise , Estações do Ano , Suécia , Poluentes Químicos da Água/análise
6.
Sci Rep ; 9(1): 1821, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755688

RESUMO

Predictive species distribution models are mostly based on statistical dependence between environmental and distributional data and therefore may fail to account for physiological limits and biological interactions that are fundamental when modelling species distributions under future climate conditions. Here, we developed a state-of-the-art method integrating biological theory with survey and experimental data in a way that allows us to explicitly model both physical tolerance limits of species and inherent natural variability in regional conditions and thereby improve the reliability of species distribution predictions under future climate conditions. By using a macroalga-herbivore association (Fucus vesiculosus - Idotea balthica) as a case study, we illustrated how salinity reduction and temperature increase under future climate conditions may significantly reduce the occurrence and biomass of these important coastal species. Moreover, we showed that the reduction of herbivore occurrence is linked to reduction of their host macroalgae. Spatial predictive modelling and experimental biology have been traditionally seen as separate fields but stronger interlinkages between these disciplines can improve species distribution projections under climate change. Experiments enable qualitative prior knowledge to be defined and identify cause-effect relationships, and thereby better foresee alterations in ecosystem structure and functioning under future climate conditions that are not necessarily seen in projections based on non-causal statistical relationships alone.


Assuntos
Herbivoria/fisiologia , Alga Marinha/fisiologia , Animais , Mudança Climática , Ecossistema , Fucus/fisiologia
7.
J Phycol ; 54(6): 888-898, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315649

RESUMO

To predict the effects of climate change, we first need information on both the current tolerance ranges of species and their future adaptive potential. Adaptive responses may originate either in genetic variation or in phenotypic plasticity, but the relative importance of these factors is poorly understood. Here, we tested the tolerance of Fucus radicans to the combination of hyposalinity and warming projected by climate models for 2070-2099. We measured the growth and survival responses of thalli in both current and future conditions, focusing on variations in tolerance among and within different clonal lineages. Survival was 32% lower in future than in current conditions, but the weight and length of the thalli which survived was respectively 267% and 178% higher when exposed to future conditions. The relatively high tolerance to the future conditions suggests that F. radicans is likely to persist in its current distributional range, which is limited to the Gulf of Bothia and Estonian coast in the Baltic Sea. Furthermore, this species may be able to expand its distribution southward and replace its congener F. vesiculosus, which, in previous studies, has not tolerated the future conditions as well. In addition, we discovered variation in tolerance to future conditions within one of the clonal lineages, which have been hitherto presumed to lack adaptive variation. The discovery of intra-clonal phenotypic plasticity means that this alga has the potential for adaptive responses to climate change, which may be the key to the future persistence of F. radicans in the Baltic Sea.


Assuntos
Adaptação Fisiológica , Mudança Climática , Fucus/fisiologia , Oceanos e Mares , Reprodução Assexuada , Suécia
8.
Mar Environ Res ; 141: 205-213, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30224086

RESUMO

Intensifying environmental changes due to climate change affect marine species worldwide. Herein, we experimentally tested if the combination of forecasted warming and hyposalinity adversely affected growth, receptacle formation, and photosynthesis of three marginal populations of the brown alga Fucus from the northern Baltic Sea. Growth was not impaired by the projected consequences of climate change but genotypes varied in their responses, suggesting existence of genetic variation in phenotypic plasticity. Climate change further prevented receptacle formation, implying that Fucus fail to reproduce sexually. Photosynthesis was not affected by climate change but varied among populations. Our results show that Fucus populations photosynthesized, grew, and survived well under the projected climate change but their sexual reproduction ceased. This suggests that the marginal populations tested herein are resilient to future conditions but only if asexual reproduction enables them to proliferate.


Assuntos
Adaptação Fisiológica , Mudança Climática , Fucus , Reprodução , Países Bálticos , Fucus/crescimento & desenvolvimento
9.
Sci Adv ; 4(5): eaar8195, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750199

RESUMO

Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches. This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.


Assuntos
Ecossistema , Oceanos e Mares , Países Bálticos , Mudança Climática , Economia , Geografia , Biologia Marinha , Modelos Teóricos
10.
Mar Environ Res ; 134: 76-84, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29331243

RESUMO

Climate change is threating species' persistence worldwide. To predict species responses to climate change we need information not just on their environmental tolerance but also on its adaptive potential. We tested how the foundation species of rocky littoral habitats, Fucus vesiculosus, responds to combined hyposalinity and warming projected to the Baltic Sea by 2070-2099. We quantified responses of replicated populations originating from the entrance, central, and marginal Baltic regions. Using replicated individuals, we tested for the presence of within-population tolerance variation. Future conditions hampered growth and survival of the central and marginal populations whereas the entrance populations fared well. Further, both the among- and within-population variation in responses to climate change indicated existence of genetic variation in tolerance. Such standing genetic variation provides the raw material necessary for adaptation to a changing environment, which may eventually ensure the persistence of the species in the inner Baltic Sea.


Assuntos
Organismos Aquáticos/fisiologia , Mudança Climática , Aclimatação , Países Bálticos , Ecossistema , Fucus/fisiologia , Oceanos e Mares
11.
Ecology ; 98(11): 2940-2951, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28869777

RESUMO

Genetic variation in a foundation species may affect the composition of associated communities as well as modify ecosystem function. While the ecological consequences of genetic diversity of foundation species have been widely reported, the ability of individual genotypes to support dissimilar communities has been documented only in forest ecosystems. Here, for the first time in a marine ecosystem, we test whether the different genotypes of the rockweed Fucus vesiculosus harbor distinct community phenotypes and whether the genetic similarity of individual genotypes or their defensive compound content can explain the variation of the associated communities. We reared replicated genotypes in a common garden in the sea and analyzed their associated communities of periphytic algae and invertebrates as well as determined their contents of defense compounds, phlorotannins, and genetic distance based on neutral molecular markers. The periphytic community was abundant in mid-summer and its biovolume, diversity and community composition varied among the rockweed genotypes. The diversity of the periphytic community decreased with its increasing biovolume. In autumn, when grazers were abundant, periphytic community biomass was lower and less variable among rockweed genotypes, indicating different relative importance of bottom-up regulation through heritable variation of the foundation species and top-down regulation through grazing intensity. Similarly, composition of the invertebrate community varied among the rockweed genotypes. Although the genotype explained about 10-18% of the variation in associated communities, the variation was explained neither by the genetic distance nor the phlorotannin content. Thus, neither neutral genetic markers nor a single phenotypic trait could provide a mechanistic understanding of the genetic basis of community specificity. Therefore, a more comprehensive mapping of quantitative trait variation is needed to understand the underlying mechanisms. The community specificity implies that genetic variation within a foundation species is crucial for the biodiversity and assembly of associated organisms and, thus, for the functioning of associated communities. The result highlights the importance of ensuring the genetic variation of foundation species as a conservation target.


Assuntos
Ecossistema , Fucus/classificação , Variação Genética , Animais , Biodiversidade , Invertebrados
12.
J Phycol ; 52(5): 877-887, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27485031

RESUMO

Genetic diversity may play an analogous role to species diversity, as it can contribute to ecosystem function and stability, and provision of ecosystem services. In the Baltic Sea, perennial algal beds are often comprised of only Fucus vesiculosus and the amount of genetic variation in fitness-related traits (i.e., the ability of the alga to photosynthesize or withstand stress) will thus determine the alga's local persistence in a changing environment. To study genetic variation in the crucial traits behind persistence we grew replicate vegetative branches that came from the same genotype in common gardens. We quantified osmotic stress tolerance and recovery responses by exposing branches to desiccation, freezing, and hyposalinity regimens. Our results show that genetic variation among genotypes was apparent for some photosynthetic parameters (maximal electron transport rate, saturation irradiance for electron transport, nonphotochemical quenching) and growth. Algae tolerated freezing (1,440 min at -2.5°C) and hyposalinity (1,560 min at 2.5) well, but did not recover from desiccation (70 min at 12°C, causing ~94% water loss). Furthermore, we found very little if any evidence on genetic variation in tolerance to these stressors. Our results suggest that low salinity and cold winters in the northern marginal populations selected for hyposalinity and freezing tolerant genotypes, possibly eroding genetic variation in tolerance, but that tolerance to harsh desiccation has been lost, likely due to relaxed selection. The overall availability of genetic variation in fitness related traits might be supportive for F. vesiculosus during adaptation to gradual changes of its environment.


Assuntos
Fucus/genética , Variação Genética , Pressão Osmótica , Fotossíntese/genética , Dessecação , Finlândia , Congelamento , Fucus/metabolismo , Salinidade
13.
PLoS One ; 8(4): e61284, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593452

RESUMO

Nutrient enrichment in coastal marine systems can have profound impacts on trophic networks. In the Baltic Sea, the population of Great Cormorant (Phalacrocorax carbo sinensis) has increased nearly exponentially since the mid-1990 s, and colonies of these seabirds can be important sources of nitrogen enrichment for nearby benthic communities due to guano runoff. In this study we used stable isotope analyses and diet mixing models to determine the extent of nitrogen enrichment from cormorant colonies, as well as to examine any possible changes in herbivore diet preferences due to enrichment. We found significantly higher levels of δ(15)N in samples from colony islands than control islands for producers (the dominant macroalga Fucus vesiculosus, filamentous algae, and periphyton) and herbivores, as well as a positive correlation between enrichment and nest density in colony sites. We also found that enrichment increased over the breeding season of the cormorants, with higher enrichment in late summer than early summer. While the amount of total nitrogen did not differ between colony and control sites, the amount of guano-based nitrogen in algae was >50% in most sites, indicating high nitrogen enrichment from colonies. Herbivores (the isopod Idotea balthica and the gastropod Theodoxus fluviatilis) preferred feeding upon the dominant macroalga Fucus vesiculosus rather than on filamentous algae or periphyton in both control and colony, and there was a significant increase in periphyton consumption near colony sites. Overall, guano from cormorant colonies seems to have effects on both producers and herbivores, as well as the potential to modify algae-herbivore interactions.


Assuntos
Aves/fisiologia , Fezes/química , Cadeia Alimentar , Fucus/química , Isótopos de Nitrogênio/análise , Fenômenos Fisiológicos da Nutrição/fisiologia , Animais , Aves/metabolismo , Finlândia , Gastrópodes/fisiologia , Herbivoria/fisiologia , Isópodes/fisiologia , Modelos Biológicos , Oceanos e Mares , Dinâmica Populacional
14.
Ecol Lett ; 15(8): 912-22, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22639820

RESUMO

Despite the importance of consumers in structuring communities, and the widespread assumption that consumption is strongest at low latitudes, empirical tests for global scale patterns in the magnitude of consumer impacts are limited. In marine systems, the long tradition of experimentally excluding herbivores in their natural environments allows consumer impacts to be quantified on global scales using consistent methodology. We present a quantitative synthesis of 613 marine herbivore exclusion experiments to test the influence of consumer traits, producer traits and the environment on the strength of herbivore impacts on benthic producers. Across the globe, marine herbivores profoundly reduced producer abundance (by 68% on average), with strongest effects in rocky intertidal habitats and the weakest effects on habitats dominated by vascular plants. Unexpectedly, we found little or no influence of latitude or mean annual water temperature. Instead, herbivore impacts differed most consistently among producer taxonomic and morphological groups. Our results show that grazing impacts on plant abundance are better predicted by producer traits than by large-scale variation in habitat or mean temperature, and that there is a previously unrecognised degree of phylogenetic conservatism in producer susceptibility to consumption.


Assuntos
Cadeia Alimentar , Herbivoria , Animais , Modelos Teóricos , Oceanos e Mares , Filogenia , Desenvolvimento Vegetal , Densidade Demográfica , Temperatura
15.
Adv Mar Biol ; 59: 37-105, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21724018

RESUMO

Stress regimes defined as the synchronous or sequential action of abiotic and biotic stresses determine the performance and distribution of species. The natural patterns of stress to which species are more or less well adapted have recently started to shift and alter under the influence of global change. This was the motivation to review our knowledge on the stress ecology of a benthic key player, the macroalgal genus Fucus. We first provide a comprehensive review of the genus as an ecological model including what is currently known about the major lineages of Fucus species with respect to hybridization, ecotypic differentiation and speciation; as well as life history, population structure and geographic distribution. We then review our current understanding of both extrinsic (abiotic/biotic) and intrinsic (genetic) stress(es) on Fucus species and how they interact with each other. It is concluded that (i) interactive stress effects appear to be equally distributed over additive, antagonistic and synergistic categories at the level of single experiments, but are predominantly additive when averaged over all studies in a meta-analysis of 41 experiments; (ii) juvenile and adult responses to stress frequently differ and (iii) several species or particular populations of Fucus may be relatively unaffected by climate change as a consequence of pre-adapted ecotypes that collectively express wide physiological tolerences. Future research on Fucus should (i) include additional species, (ii) include marginal populations as models for responses to environmental stress; (iii) assess a wider range of stress combinations, including their temporal fluctuations; (iv) better differentiate between stress sensitivity of juvenile versus adult stages; (v) include a functional genomic component in order to better integrate Fucus' ecological and evolutionary responses to stress regimes and (vi) utilize a multivariate modelling approach in order to develop and understand interaction networks.


Assuntos
Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Fucus/efeitos dos fármacos , Estresse Fisiológico , Animais , Ecossistema , Poluição Ambiental/efeitos adversos , Fucus/fisiologia
16.
Mar Environ Res ; 70(3-4): 283-92, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20691336

RESUMO

The brown alga Fucus vesiculosus is a foundation species in the Baltic Sea littoral, hosting a rich faunal community. We compared the species composition and diversity of invertebrate macrofauna living on F. vesiculosus between sites differing in their eutrophication status and exposure to waves at three different times during a season. We determined the size, nitrogen and phlorotannin content of the alga. The invertebrate community differed substantially between sites near fish farms and those in more pristine environment. Snails and bivalves were more abundant on the Fucus stands near fish farms than on control stands, where crustaceans were more abundant. The abundance of molluscs decreased with the increasing shore exposure, while gammaridean amphipods dominated on the exposed shores. Abundance of several taxa increased during the proceeding growing season. The density of the most important herbivore of F. vesiculosus, Idotea balthica, varied 100-fold during the season being the lowest in June and the highest in August when the generation born in the summer started to feed on Fucus. Thus, the diversity and composition of Fucus-associated invertebrate fauna varies both with environmental conditions of the stand and seasonally. Although the negative effects of eutrophication on distribution and abundance of Fucus stands are well documented, a moderate increase of nutrients was found to increase the species richness of Fucus-associated fauna in early summer.


Assuntos
Biodiversidade , Fucus/fisiologia , Invertebrados/fisiologia , Animais , Monitoramento Ambiental , Eutrofização , Fucus/química , Oceanos e Mares , Densidade Demográfica , Fatores de Tempo , Movimentos da Água
17.
Oecologia ; 162(3): 685-95, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19921521

RESUMO

In the marine littoral, strong grazing pressure selects for macroalgal defenses such as the constitutive and inductive production of defense metabolites. Induced defenses are expected under spatiotemporally varying grazing pressure and should be triggered by a reliable cue from herbivory, thereby reducing grazing pressure via decreased herbivore preference and/or performance. Although induced resistance has frequently been demonstrated in brown macroalgae, it is yet to be investigated whether induced macroalgal resistance shows genetic variation, a prerequisite for evolutionary responses to selection. In addition, consequences of induced resistance on herbivore performance have rarely been tested while the role of brown algal phlorotannins as inducible defense metabolites remains ambiguous. Using preference bioassays, we tested various cues, e.g., natural grazing, waterborne cues or simulated grazing to induce resistance in the brown alga Fucus vesiculosus. Further, we investigated whether there are induced responses in phlorotannin content, genetic variation in induced resistance or incurred performance costs to the mesoherbivore isopod, Idotea baltica. We found that both direct grazing and waterborne grazing cues decreased the palatability of F. vesiculosus, while increasing the total phlorotannin content. Since the sole presence of the herbivore also increased the total soluble phlorotannins, yet failed to stimulate deterrence, we concluded that phlorotannins alone do not explain increased resistance. Induced resistance varied between algal genotypes and thus showed potential for evolutionary responses to variation in grazing pressure. Induced resistance also incurred performance costs for female I. baltica via reduced egg production. Our results show that the induced resistance of F. vesiculosus decreases grazing pressure by deterring herbivores as well as impairing their performance. Resistance may be induced in advance by waterborne cues and spread effectively throughout the F. vesiculosus belt. Through lowering herbivore performance, induced resistance may also reduce future grazing pressure by decreasing the population growth rate of I. baltica.


Assuntos
Crustáceos/fisiologia , Phaeophyceae/fisiologia , Taninos/metabolismo , Animais , Genótipo , Phaeophyceae/genética
18.
Behav Processes ; 79(3): 175-81, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18692551

RESUMO

Habitat choice of herbivores is expected to be a resolution of a trade-off between food and shelter. The resolution of this trade-off may, however, be dynamic within a species because distinct phenotypes may value these factors differently and the value may vary temporally. We studied this hypothesis in the marine herbivore Idotea balthica (Isopoda), by simultaneously manipulating both food and shelter, and investigated whether the resolution of the trade-off differed between sexes, colour morphs and day and night (i.e. high and low predation risk). Isopods chose between exposing and concealing backgrounds in which the quantity or quality of food varied. When choosing between the backgrounds in the absence of food, females preferred the concealment more than males did. However, in a trade-off situation the isopods traded shelter for food, and females more so than males. Thus, males' lower preference for the shelter was not counterbalanced by a stronger preference for food. The microhabitat use also differed between night and day showing adaptation to diurnally fluctuating predation risk. We suggest that microhabitat utilization of females is more strongly tied to variation in risk and resources than that of males, for whom other factors, such as seeking mates, may be more important.


Assuntos
Comportamento Animal/fisiologia , Comportamento de Escolha/fisiologia , Comportamento Alimentar/fisiologia , Isópodes/fisiologia , Análise de Variância , Animais , Ecossistema , Meio Ambiente , Comportamento Alimentar/psicologia , Feminino , Alimentos , Masculino , Comportamento Predatório/fisiologia , Fatores de Risco , Fatores Sexuais , Fatores de Tempo
19.
Oecologia ; 155(3): 559-69, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18157551

RESUMO

Macroalgae have to cope with multiple natural enemies, such as herbivores and epibionts. As these are harmful for the host, the host is expected to show resistance to them. Evolution of resistance is complicated by the interactions among the enemies and the genetic correlations among resistances to different enemies. Here, we explored genetic variation in resistance to epibiosis and herbivory in the brown alga Fucus vesiculosus, both under conditions where the enemies coexisted and where they were isolated. F. vesiculosus showed substantial genetic variation in the resistance to both epibiosis and grazing. Grazing pressure on the alga was generally lower in the presence than in the absence of epibiota. Furthermore, epibiosis modified the susceptibility of different algal genotypes to grazing. Resistances to epibiosis and grazing were independent when measured separately for both enemies but positively correlated when both these enemies coexisted. Thus, when the enemies coexisted, the fate of genotypes with respect to these enemies was intertwined. Genotypic correlation between phlorotannins, brown-algal phenolic secondary metabolites, and the amount of epibiota was negative, indicating that these compounds contribute to resistance to epibiosis. In addition, phlorotannins correlated also with the resistance to grazing, but this correlation disappeared when grazing occurred in the absence of epibiota. This indicates that the patterns of selection for the type of the resistance as well as for the resistance traits vary with the occurrence patterns of the enemies.


Assuntos
Adaptação Biológica , Ecossistema , Fucus/genética , Variação Genética , Taninos/metabolismo , Animais , Comportamento Alimentar , Finlândia , Fucus/metabolismo
20.
Phytochem Anal ; 18(4): 326-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17623367

RESUMO

Separating individual compounds by HPLC represents an effective method for the detection and quantification of phenolic compounds and has been widely utilised. However, phlorotannins are commonly quantified using colorimetric methods, as the total amount of the whole compound group. In the present paper the separation of a set of individual soluble phlorotannins from the phenolic crude extract of Fucus vesiculosus was achieved by HPLC with UV photodiode array detection. Different gradient programs for reversed- and normal-phase HPLC methods were developed and tested. Normal-phase (NP) conditions with a silica stationary phase and a mobile phase with a linear gradient of increasing polarity were found to separate 16 individual components of the phenolic extract. The suitability of the NP-HPLC method for mass spectrometric application was preliminarily tested. Sample preparation was found to be a critical step in the analysis owing to the rapid oxidation of phlorotannins; ascorbic acid was used as an antioxidant.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fucus/química , Taninos/análise , Taninos/química , Estrutura Molecular , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...